1,413 research outputs found

    The Osmotic Coefficient of Rod-like Polyelectrolytes: Computer Simulation, Analytical Theory, and Experiment

    Full text link
    The osmotic coefficient of solutions of rod-like polyelectrolytes is considered by comparing current theoretical treatments and simulations to recent experimental data. The discussion is restricted to the case of monovalent counterions and dilute, salt-free solutions. The classical Poisson-Boltzmann solution of the cell model correctly predicts a strong decrease in the osmotic coefficient, but upon closer look systematically overestimates its value. The contribution of ion-ion-correlations are quantitatively studied by MD simulations and the recently proposed DHHC theory. However, our comparison with experimental data obtained on synthetic, stiff-chain polyelectrolytes shows that correlation effects can only partly explain the discrepancy. A quantitative understanding thus requires theoretical efforts beyond the restricted primitive model of electrolytes.Comment: 16 pages, 2 figure

    Theory and simulations of rigid polyelectrolytes

    Full text link
    We present theoretical and numerical studies on stiff, linear polyelectrolytes within the framework of the cell model. We first review analytical results obtained on a mean-field Poisson-Boltzmann level, and then use molecular dynamics simulations to show, under which circumstances these fail quantitatively and qualitatively. For the hexagonally packed nematic phase of the polyelectrolytes we compute the osmotic coefficient as a function of density. In the presence of multivalent counterions it can become negative, leading to effective attractions. We show that this results from a reduced contribution of the virial part to the pressure. We compute the osmotic coefficient and ionic distribution functions from Poisson-Boltzmann theory with and without a recently proposed correlation correction, and also simulation results for the case of poly(para-phenylene) and compare it to recently obtained experimental data on this stiff polyelectrolyte. We also investigate ion-ion correlations in the strong coupling regime, and compare them to predictions of the recently advocated Wigner crystal theories.Comment: 32 pages, 15 figures, proceedings of the ASTATPHYS-MEX-2001, to be published in Mol. Phy

    Polyelectrolyte Solutions with Multivalent Salts

    Full text link
    We investigate the thermodynamic properties of a polyelectrolyte solution in a presence of {\it multivalent} salts. The polyions are modeled as rigid cylinders with the charge distributed uniformly along the major axis. The solution, besides the polyions, contain monovalent and divalent counterions as well as monovalent coions. The strong electrostatic attraction existing between the polyions and the counterions results in formation of clusters consisting of one polyion and a number of associated monovalent and divalent counterions. The theory presented in the paper allows us to explicitly construct the Helmholtz free energy of a polyelectrolyte solution. The characteristic cluster size, as well as any other thermodynamic property can then be determined by an appropriate operation on the free energy

    Overcharging of DNA in the presence of salt: Theory and Simulation

    Get PDF
    A study of a model rod-like polyelectrolyte molecule immersed into a monovalent or divalent electrolyte is presented. Results from the hypernetted-chain/mean spherical approximation (HNC/MSA) theory, for inhomogeneous charged fluids, {\ch are} compared with molecular dynamics (MD) simulations. As a particular case, the parameters of the polyelectrolyte molecule are mapped to those of a DNA molecule. An excellent qualitative, and in some cases quantitative, agreement between HNC/MSA and MD is found. Both, HNC/MSA and MD, predict the occurrence of overcharging, which is not present in the Poisson-Boltzmann theory. Mean electrostatic potential and local concentration profiles, ζ\zeta-potential and charge distribution functions are obtained and discussed in terms of the observed overcharging effect. Particularly interesting results are a very non-monotonic behavior of the ζ\zeta-potential, as a function of the rod charge density, and the overcharging by {\em monovalent} counterions.Comment: 11 pages, 8 figures, RevTex, published in J. Phys. Chem. B 2001, vol. 105, pags. 1098
    • …
    corecore